A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part II: A Stratification-Enhanced Staircase Algorithm

نویسندگان

  • Alan Edelman
  • Erik Elmroth
  • Bo Kågström
چکیده

Computing the Jordan form of a matrix or the Kronecker structure of a pencil is a well-known ill-posed problem. We propose that knowledge of the closure relations, i.e., the stratiication, of the orbits and bundles of the various forms may be applied in the staircase algorithm. Here we discuss and complete the mathematical theory of these relationships and show how they may be applied to the staircase algorithm. This paper is a continuation of our Part I paper on versal deformations, but may also be read independently.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations∗

We derive versal deformations of the Kronecker canonical form by deriving the tangent space and orthogonal bases for the normal space to the orbits of strictly equivalent matrix pencils. These deformations reveal the local perturbation theory of matrix pencils related to the Kronecker canonical form. We also obtain a new singular value bound for the distance to the orbits of less generic pencil...

متن کامل

Stratification of Matrix Pencils

To design a modern control system is a complex problem which requires high qualitative software. This software must be based on robust algorithms and numerical stable methods which both can provide quantitative as well as qualitative information. In this Licentiate Thesis, the focus is on the qualitative information. The aim is to grasp the underlying advanced mathematical theory and provide al...

متن کامل

Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations

Developing theory, algorithms, and software tools for analyzing matrix pencils whose matrices have various structures are contemporary research problems. Such matrices are often coming from discretizations of systems of differential-algebraic equations. Therefore preserving the structures in the simulations as well as during the analyses of the mathematical models typically means respecting the...

متن کامل

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

Software Tools for Matrix Canonical Computations and Web-Based Software Library Environments

This dissertation addresses the development and use of novel software tools and environments for the computation and visualization of canonical information as well as stratification hierarchies for matrices and matrix pencils. The simplest standard shape to which a matrix pencil with a given set of eigenvalues can be reduced is called the Kronecker canonical form (KCF). The KCF of a matrix penc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999